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Measurement of third-order nonlinear optical susceptibility
of synthetic diamonds
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Diamonds are wide-gap semiconductors possessing excellent physical and chemical properties; thus, they
are regarded as very appropriate materials for optoelectronic devices. Based on the Kerr effect, we introduce
a simple and feasible method for measuring the third-order nonlinear optical susceptibility of synthetic
diamonds. In the experiments, synthetic type I diamond samples and transverse electro-optic modulation
systems are utilized. As for the laser with the wavelength of 650 nm, the third-order susceptibility and

Kerr coefficient of the diamond samples are obtained at χ
(3)
1212 = 2.17 × 10−23 m2/V2 and S44 = 1.93 ×

10−23 m2/V2, respectively.
OCIS codes: 160.4670, 190.3270, 160.4760.
doi: 10.3788/COL20100807.0685.

Diamonds have been studied as wide-gap semiconduc-
tors with a bandgap of about 5.5 eV[1]. They have been
found to possess excellent optical and electronic prop-
erties, such as high breakdown field (∼107 V/cm), high
carrier mobility (∼0.2 m2/(V·s))[2], high thermal conduc-
tivity (∼20 W/(cm·K))[3], high resistivity (∼1016 Ω·cm),
low dielectric constant (5.66)[4], and good transparency
over a wide range of electromagnetic spectra from 225 nm
to the far infrared[5]. For these reasons, diamonds have
been regarded as very suitable materials for optoelec-
tronic devices. The technology improvement on, and
the price decrease of large-sized synthetic diamonds have
promoted the application and further development of di-
amonds. For example, artificial diamond sensors have
been widely used for detecting radiation[6], charged
particles[7], temperature[8], etc. Diamonds belong to
the m3m point group and have inverse symmetry. Ac-
cording to the dipole approximation, the second-order
nonlinear optical effects should be forbidden. The third-
order nonlinear optical effects have been considered as
the main nonlinear phenomena in diamonds. In order
to utilize these third-order nonlinear optical effects, the
third-order nonlinear susceptibility of diamonds must be
determined. However, only a few related reports have
been published. Anastassakis et al. observed the second-
order electro-optic effect (Kerr effect) in natural type
IIa diamonds[9]. They used a well-known method based
on the elliptical properties of the light emerging from a
birefringent crystal placed between two crossed polarizers
and measured the total phase difference to estimate the
Kerr coefficient. However, the error of this method was
considerable, and only the order of magnitude of the Kerr
coefficient was estimated at a wavelength of 546.1 nm.
Arya et al. calculated the third-order nonlinear optical
susceptibility tensor in diamond by the tight-binding or-
bital model[10]. Levenson et al. investigated the details

of the dispersive behavior of the third-order nonlinear
optical susceptibility tensor in natural and synthetic di-
amonds by frequency mixing experiments[11]. The set of
experimental equipment used in their investigations was
complex and expensive.

In this letter, a nonzero element of the third-order
nonlinear optical susceptibility tensor χ

(3)
1212 of synthetic

type I diamonds is investigated at a wavelength of 650 nm
using the transverse electro-optical (EO) modulation sys-
tem and the theory of Kerr effect. This method requires
affordable experimental equipment and very simple ex-
perimental processes, while providing high measurement
precision at the same time.

Diamonds belong to cubic crystal class, and their re-
fractive indices have been found to be isotropic. Without
the external fields, the index ellipsoid of diamonds would
be a sphere. If an external electric field is applied on the
diamond crystal, symmetry will be reduced and it will
become a birefringent crystal. The change of refractive
index has been found to be proportional to the square
of the intensity of the applied electric field. When the
applied electric field is along the direction of [111] of the
diamond crystal, it has been found that the diamond
crystal could change into a uniaxial crystal whose optical
axis is the [111] crystallographic axis. The index ellip-
soid will then become a rotational ellipsoid whose axis of
rotation is also the [111] crystallographic axis.

The ideal shape of diamond crystal is cuboctahedron,
as shown in Fig. 1(a). The samples used in our ex-
periments were provided by Zhengzhou Zhongnan Jete
Superabrasives Co., Ltd. As shown in Fig. 1(b), these
samples are irregular cuboctahedrons and include eight
hexagonal planes and six quadrilateral planes. All the
hexagonal faces are {111} planes, and the quadrilateral
faces are {100} planes. The two opposite hexagonal
planes or opposite quadrilateral planes are parallel to
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Fig. 1. Illustration of the diamond sample used in the experi-
ment. (a) Ideal shape of the diamond crystal–cuboctahedron;
(b) photograph of the diamond sample.

each other. Pure diamond crystals are transparent and
colorless. In our experiments however, unintentionally
doped type I diamond crystals were used. These crystals
are yellowish because of the presence of trace quantities
of nitrogen impurities in the crystals. Despite of the im-
purities, the resistivity of the diamond samples is still
high (about 108 Ω·cm), and the carrier density is only
about 3×107 cm−3 at room temperature. Thus, the car-
rier effect can be ignored.

When the modulating electric field E = E0 cos(ωt) is
applied on the diamond sample along the [111] axis (E is
the applied electric field), according to the theory of Kerr
effect[12], the refractive index along the optical axis ([111]
axis, which is also selected as the z axis in the Cartesian
coordinates) can be written as

nz = n0 − n3
0E

2
0(S11 + 2S12 + 2S44)/6, (1)

where Sij is the Kerr coefficient, n0 is the refractive in-
dex of the diamond without electric field application,
and E0 is the intensity of the applied electric field.
According to the relationship between the Kerr coef-
ficient Sijkl and the third-order susceptibility element,
Sijkl = −3χ

(3)
ijkl/ε0

iiε
0
jj , Eq. (1) can be rewritten as

nz = n0 + E2
0

(
χ

(3)
1111 + 2χ

(3)
1122 + 2χ

(3)
1212

)
/2n0, (2)

where χ
(3)
1111, χ

(3)
1122, and χ

(3)
1212 are the nonzero elements

of the third-order nonlinear optical susceptibility of dia-
mond. Similarly, the refractive indices along the direc-
tions perpendicular to the [111] axis (e.g., the [11̄0] and
[112̄] axes corresponding to the x and y axes in the Carte-
sian coordinates, respectively) can be expressed as

nx = ny = n0 + E2
0

(
χ

(3)
1111 + 2χ

(3)
1122 − χ

(3)
1212

)
/2n0. (3)

Thus, when the probing beam is perpendicular to the di-
rection of the applied electric field, the maximum phase
delay ∆φmax can be obtained. That is,

∆φmax = 3πLE2
0χ

(3)
1212/λn0, (4)

where L is the optical path in the diamond sample under
the electric field, and λ is the wavelength of the prob-
ing beam in vacuum. However, because diamond is the
hardest material, abrasion and processing into the re-
quired shape are difficult. Thus, based on the original
geometry shape of the diamond samples, the [111̄] axis
was chosen as the propagation direction of the probing
beam, which was tilted at an angle of θ = 70.53◦ with
respect to the optical axis. The two normal modes of

the probing beam in (111̄) plane, namely, the o-ray and
e-ray, will experience the respective refractive indices as

no = n0 + E2
0

(
χ

(3)
1111 + 2χ

(3)
1122 − χ

(3)
1212

)
/2n0, (5)

ne = n0 + E2
0

(
χ

(3)
1111 + 2χ

(3)
1122 + 5χ

(3)
1212/3

)
/2n0. (6)

As a result, the phase difference between the o-ray and
e-ray can be written as

∆φ = 8πLE2
0χ

(3)
1212/3λn0. (7)

The sample was bounded by two steel electrodes. In or-
der to avoid the air gap between the electrode and the
sample, soft indium slices were sandwiched between the
electrode and the sample. The electrodes were then sur-
rounded by insulating glue to prevent discharging, and
tightly contacted with the opposite (111) planes. Each
contact area was slightly smaller than the face of the sam-
ple. The sample and the electrodes were fixed on an insu-
lating board with a hole at the center, so that the probing
beam can travel through the sample and the hole. The
configuration of the electrodes is shown in Fig. 2. In the
experiments, it was necessary to apply very high alter-
nating current (AC) voltage on the sample. The output
signal from the low-frequency signal generator was cou-
pled into an audio power amplifier to obtain a higher
power signal, and then this high power signal was trans-
formed into the required AC voltage by a transformer.

A transverse EO modulation system was set up, as
shown in Fig. 3. A 650-nm continuous-wave (CW) laser
diode was used as the light source, and the probing beam
was received by the Si photodetector connected with the
lock-in amplifier. The [111̄] axis was horizontal in the
space. The vertical orientation in the space was named
y′ axis. The polarization of the polarizer was 45◦ with
respect to the y′ axis, and the polarization of the ana-
lyzer was perpendicular to that of the polarizer. The fast
axis of the quarter wave plate was parallel to the y′ axis.
Lens 1 focused the beam into the sample, and the output
beam from the sample was collimated by lens 2 whose
focal distance was the same as lens 1. Both lenses were
long-focus lens, so that the beam in the sample can still
be taken as the parallel beam. Under these conditions,
the system will meet the best sensitivity and linearity,
and the intensity of the output beam from the analyzer
can be calculated using the Jones matrix[13]:

Iout = Iin(1 + sin∆φ)/2, (8)

where Iin is the intensity of the input beam, and ∆φ
is the phase difference expressed in Eq. (7). Generally,
∆φ ¿ 1, thus Eq. (8) can be rewritten as

Iout = Iin

(
1 + 8πE2

0Lχ
(3)
1212/3λn0

)
/2. (9)

Fig. 2. Top view of the electrode configuration.
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Fig. 3. Experimental setup for the transverse EO modulation
system.

Assuming that the modulation voltage V = V0 cosωt is
applied on the sample, and d is the distance between
the electrodes, the electric field could be expressed as
E0 = V/d = V0(cos ωt)/d, and Eq. (9) could be changed
into

Iout = Iin

(
1 + 4πV 2

0 Lχ
(3)
1212/3λn0d

2
)

/2 + Ĩ(2ω)

Ĩ(2ω) = 2πIinV 2
0 Lχ

(3)
1212 cos (2ωt) /3λn0d

2
. (10)

From Eq. (10), the output beam includes the direct cur-
rent (DC) component which cannot be detected by the
lock-in amplifier, and the AC component Ĩ(2ω) which
can be detected.

Without modulation voltage on the sample, the in-
tensity of the output beam from the analyzer, that is,
I1 = Iin/2, can be detected by the Si photodetector and
the lock-in amplifier after chopping the probing beam at
the frequency of 284 Hz. The measured photoelectric
signal is U1 = MI1 = MIin/2 = 45.9 mV, where M is a
factor relevant to the optical elements and the responsiv-
ities of the photodetector and the lock-in amplifier. The
chopped optical signal received by the photodetector is
the square wave, which can be expressed in the form of
the Fourier series; however, the lock-in amplifier can only
detect the sine signal at the fundamental frequency, thus
a modification factor 2/π is considered as[14]

U1 = 2MI1/π = MIin/π = 45.9 mV. (11)

Then, with the chopper removed, the modulation volt-
age with the frequency of 142 Hz was applied on the
sample. The frequency of the reference channel of the
lock-in amplifier was set at twice the frequency of the
modulation voltage. Thus, the AC component Ĩ(2ω) can
be detected, and the measured photoelectric signal U2

can be written as

U2 = M
∣∣∣Ĩ(2ω)

∣∣∣ = 2πMIinLV 2
0 χ

(3)
1212/3λn0d

2. (12)

From Eqs. (11) and (12), we obtain the ratio of U2 and
U1 as

U2/U1 = 2π2LV 2
0 χ

(3)
1212/3λn0d

2. (13)

The relationship between U2/U1 and V0/
√

2 can be mea-
sured by altering the amplitude of the modulation volt-
age, as shown in Fig. 4. A good quadratic curve was
derived using this process. From the fitting function, we

Fig. 4. Relationship between U2/U1 and V0/
√

2.

obtained the coefficient of the quadratic term as

2π2Lχ
(3)
1212/3λn0d

2 = 3.39× 10−13 V−2. (14)

The distance between the electrodes and the optical
path were measured by a vernier caliper, and the val-
ues were obtained at d = 1.95 mm and L = 1.41 mm,
respectively. The refractive index of the diamond was
n0 = 2.4105 at the wavelength of 650 nm. Thus, from
Eq. (14), the third-order nonlinear optical susceptibil-
ity element χ

(3)
1212 = 2.17 × 10−22 m2/V2 was obtained.

According to the relationship between the Kerr coeffi-
cient and the third-order susceptibility element, the Kerr
coefficient of diamonds can also be achieved, that is,
S44 = S1212 = 1.93× 10−23 m2/V2.

Measuring the absolute intensity of the probing beam
thus became unnecessary, and later became an advan-
tage. Moreover, the transverse EO modulation system
was designed to meet the best sensitivity and linearity;
the phase delay whose measurement should be as large
as possible was realized according to the original shape of
diamond samples. All these ensured measurement preci-
sion.

However, the intensity fluctuations of the laser resulted
in 2% error because the values of U1 and U2 were not
measured synchronously. Given that the propagation di-
rection of the probing beam is not perpendicular to the
optical axis of the diamond in experiments, there exists
a walk-off angle α between the o-ray and e-ray. α can be
estimated according to[15]

tan α =
(
1− n2

y

/
n2

z

) tan θ

1 + n2
y tan2 θ/n2

z

. (15)

Given the insignificant difference between ny and nz, the
walk-off angle α in our experiments was very small, a
negligible value of about 10−6. The wavelength of the
laser was 650 nm, a value far from the absorption edge of
diamond (∼225 nm); thus, the Franz-Keldysh effect was
omitted[16]. In addition, since the carrier density in the
diamond samples was very low, the carrier effects, such
as free-carrier dispersion effect[17], electric field shield
effect of carriers, etc., were ignored as well.

In conclusion, we present a general method for mea-
suring the third-order nonlinear optical susceptibility of
wide bandgap materials. The method is very convenient
and feasible because measuring the absolute intensity
of the probing beam is rendered unnecessary. One of



688 CHINESE OPTICS LETTERS / Vol. 8, No. 7 / July 10, 2010

the obtained third-order nonlinear optical susceptibility
elements χ

(3)
1212 of diamond crystals has the same order

of magnitude as that in a previous study[11]. The possi-
bility of achieving other third-order susceptibilities χ

(3)
1111

and χ
(3)
1122 using this method is presented particularly

when the suitable crystal orientations and the directions
of applied electric fields are adopted. Consequently, the
Kleinman symmetry of diamonds can be verified. With
the breakdown field of diamonds of about 107 V/cm,
the diamond crystal with 1-mm thickness can endure a
breakdown voltage of 106 V. Diamonds have potential
applications in high voltage sensors based on the Kerr
effect.
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